Enantioselective Total Synthesis of (+)-Wortmannin

(+)-wortmannin

Guo, Y.; Quan, T. Lu, Y.; Luo, T. J. Am Chem. Soc. 2017, 139, 6815-6818

John Milligan Wipf Group Meeting Current Literature June 10, 2017

Wortmannin

- First isolated in 1957, but structure not confirmed until the early 1970's
- Potent (IC₅₀ = 5 nM) inhibitor of phosphatidylinositol 3kinase (PI-3K), which is part of a signaling cascade for cell growth and differentiation

Wipf, P.; Halter, R. J. Org. Biomol. Chem. 2005, 3, 2053-2061.

Mechanism of action

 Strained (12 kcal/mol) and electrophilic furan motif allows for covalent attachment of Lys-802 on PI-3K

Wipf group contributions

IC₅₀ of against purified PI3K: 0.1 nM
more stable *in vivo*decreased toxicity

Ihle, N. T.; Paine-Murrieta, G.; Berggren, M. I.; Baker, A.; Tate, W. R.; Wipf, P.; Abraham, R. T.; Kirkpatrick, D. L.; Powis, G. *Mol. Cancer Therap.* **2005**, *4* (9), 1349-1357.

Previous Total Syntheses

Sato, S.; Nakada, M.; Shibasaki, M. *Tetrahedron Lett.* **1996**, *37*, 6141-6144. Mizutani, T.; Honzawa, S., Tosaki, S.; Shibasaki, M. *Angew. Chem. Int. Ed.* **2002**, *41*, 4680-4682

Title paper: retrosynthesis

Carboxylation with MMC: Frie, J. L.; Jeffrey, C. S.; Sorensen, E. J. Org. Lett. 2009, 11, 5394.

Furan Synthesis Mechanism

Reduction/Coupling

Epoxidation

Intramolecular Friedel-Crafts

Oxidation Sequence

End Game

			MeO_AcO,, O H H O O O	
Vineses	(+)-Wortmannin	(–)-Hibiscone C	(+) 24	(-) 25
Kinases	(+)-1	(-)-4	(+)-24	(-)-25
p110a	8.0 ± 2.2	>100000	2.8 ± 0.6	420 ± 127
p110β	12.2 ± 1.7	N.D.	2.8 ± 0.5	74 ± 19
p1108	21 ± 6.0	N.D.	10.1 ± 5.0	495 ± 173
p110γ	10.2 ± 2.1	N.D.	10.8 ± 5.7	215 ± 35
VPS34	14.2 ± 3.3	N.D.	7.7 ± 1.1	87 ± 12
p110a (E545K)	N.D.	N.D.	2.4 ± 0.6	384 ± 121
p110α (H1047L)	N.D.	N.D.	3.6 ± 0.5	172 ± 43
ΡΙ3Κ-C2β	N.D.	N.D.	39 ± 11	429 ± 194
ΡΙ4Κβ	N.D.	N.D.	99 ± 15	>10000
PLK1	N.D.	N.D.	74 ± 35	N.D.
PIP5K1A	N.D.	N.D.	>10000	>10000
CLK1	N.D.	N.D.	>10000	N.D.
CSNK1E	N.D.	N.D.	>10000	N.D.
CSNK1G3	N.D.	N.D.	>10000	N.D.
EGFR (G719C)	N.D.	N.D.	>10000	>10000
EGFR (L861Q)	N.D.	N.D.	N.D.	>10000
MST1	N.D.	N.D.	>10000	N.D.

 a K_d ± SEM (nM) values were measured using KdELECT (DiscoverX).

Conclusions

- The total synthesis of (+)-wortmannin was completed in 21 steps and 0.4% overall yeild from the Hajos-Perrish ketone
- Key features include a novel Pd-mediated furan synthesis, intramolecular Friedel-Crafts alkylation, and late stage formal C-H oxidation
- Kinase profiling of synthetic wortmannin and related analogs was conducted

Tian, Y.; Xu, X.; Zhang, L.; Qu, J. Org. Lett. 2016, 18, 268-271.